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Abstract—The information rates achievable by using elec- whereg(t) is the entropy of a geometric distribution with mean
tromagnetic radiation affected by thermal noise and signal ¢, given byg(t) = (1 +t)log(1 +t) — tlogt (with 0log0 =
decoherence are studied. The classical coherent-state Gaian 0). It has been proved [6] that using entanglement does not

model is compared with an alternative photon gas model which . th ity i b f th | . . f
represents lack of a shared phase reference between trandter Increase the capacity in absence of thermal noise, 1. e. for

and receiver. At any frequency, the information rates in the &» = 0. For other values ot,,, entanglement might yield a
presence of decoherence essentially coincide with thoseeov larger capacity, although this formula is conjectured tahee
a Gaussian model when the signal-to-noise ratio is below a capacity also in that case [7].

threshold. Only above the threshold does decoherence cause Whenes. > 1 as is the case at radio and microwave
n )

significant loss in information rates; the loss can amount tchalf f . imole alaeb h that th ity f db
of the capacity. The threshold exceeds 40 dB for radio frequeies requencu_as, Simple algebra s OWS_ a_ € Capacity foyn
and vanishes at optical frequencies. Shannon is very close to the capacity with coherent heter@dy

detection and to the one-shot, coherent-state capacityjgh

Chet(€s:€n) ~ Chsw(es, en) =~ Csn(Es, kTp). (4)

|I. INTRODUCTION

The consideration of quantum effects in information theory _ _ _ _ _
has a rich history, from the pioneering analysis of Gordahny of these equations gives thus the highest informatitesra
[1], [2], through significant contributions by Helstrom [8hd achievable in practice when thermal noise is the limitirgda
Holevo [4], [5], up to more recent work by Giovannegt Inspired by recent work on reference frames in information
al. [6], [7]. Often, these authors aimed at deriving Shannortgeory [10], where Schumacher is quoted as saying that “re-
expression for the capacity of a waveform channel withffictions on the resources available for communicatiedyi
Gaussian noise from basic quantum-mechanical princigles. interesting communication theories”, we consider theatfté
is well-known, Shannon’s formula for the capacity,Gin bits decoherence, by which we mean absence of a shared phase

per Fourier mode) of the Gaussian channel is [8] reference between transmitter and receiver, and deal tvith t
) information rate loss incurred by such restriction.
Csh(Es, 0%) = log(Es + No) — log(No), (1) In Sec. I we show that decoherence induces a model

: . of radiation as a photon gas, where information is sent by
where E; is the average received energy per mode Ajds . . -
: : : modulating the energy of the Fourier modes of the field; at the
the one-sided (thermal) noise spectral density. . : ) . .
receiver, energy is measured. The received signal is the sum

In Gordon's approach [1], [2], information is sent OVEh thermal noise, distributed as blackbody radiation atvemi

coherent states and recovered at the receiver by performf@%perature and frequency, and a useful signal whose energy

a coherent heterodyne measurement. In this case, NOIS&i&ribution is the same as for a coherent state. As withctire

additive Gaussian with variande,, +.1)h’/’ wheree, |s.the detection methods at optical frequencies [9], commurocati
average number of thermal photons in the corresponding mocﬁ%not rely on knowledge of the phase of coherent states.

e C
of frequencyr; the average energy., similarly becomes In Sec. Ill we show that the information rate of the photon

ﬁ s t;;égg’e aihzeég%etzﬁyzeirsagsgnurk?;?lr] o{g?gnal photon%.as essentially coincides with Shannon’s capacity, wighctr
’ ' pacity of heterodyne detection, and with the one-shot aatter
Chet(€s,£n) = log(1 + &5 +en) —log(1 +¢,). (2) State capacity in Eq. (4) above, provided that the signal-to
noise ratio lies below a threshold; above the thresholdoup t
In addition, if one does not impose a restriction on thealf of the capacity may be lost. For a frequencgin Hertz),
measurement method, one can use the Holevo-Schumachigis threshold is approximately given tﬁylgl at 290K, and
Westmoreland (HSW) theorem to compute the largest informg-thus large for radio and microwave frequencies. Moreover
tion rate achievable. When the channel inputs are not ele@dngn the “classical” limit where energy is continuous the a@ipa

and no entangled measurements are allowed one obtainsdhehe photon gas coincides with Shannon’s capaciy. C
so-called one-shot capacity. If coherent—i. e. Gaussian—

states are used the corresponding one-shot capacity, wieich Il. A'MODEL OF RADIATION AS A PHOTON GAS
denote by Gsw, is given by [4], [5], [6] In this section, we present a model of the radiation field
detected at the receiver as a photon gas. The model is othtaine
Chsw(€s,en) = g(es +€n) — g(en), () from the usual quantum analysis by assuming that radiation
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behaves as classical particles, with no quantum interéeren As an alternative, a direct detection receiver reacts to the
effects. We hasten to remark that this assumption does iset ainstantaneous number operaigy .., given by

naturally from electromagnetic theory. Neverthelessntioglel N R o
i : i o G5 G = n2l T + (1 — 1)z 2

is well-defined and leads to useful insights on the transomiss JmJm mem /Emsm

of information by using electromagnetic radiation. + (V@ —n)e’@==?)31 2 1+c.oc).  (8)

Consider one polarization of the electromagnetic field ﬁ%

an aperture, which we denote bj(t), a complex-valued tion interval generates an output, modelled as a random vari

function representing the positive-frequency componefts s : I .
the received field. Throughout the paper we use a tilde ?g'eym distributed according to a Laguerre distribution with

|im‘2 _ 1 1
indicate that the function represents a field amplitude. Sg\starta;?]etersf; hv and (tl' n)en []}3”]' In the approxtlmlanﬁ_n
well-known, the fieldg(¢) admits a Fourier decomposition at the energy 1S continuoug,, Toflows a non-central chi-

onto frequencies of the form. + 7, lying in a band of width sq;are g|str|but|c_)n. ivalent t tulating th | of th
W around a reference frequeney; hereT is the duration econerence IS equivaient to postuating the removal of the

of the observation interval. Thex-th basis function is then :cnterfgr(teQCf :cermcsz (a_n(: Ith compltex conjﬁgate),_wh_os_e
given by 6, (t) — -2+t Further, let the fieldj(¢) orm is that of a quantum interference term, while maintagni

NN o the rest of the analysis. The measuremgptis now given by
represent the superposition of a useful sig@gl) and of

additive Gaussian noisgt), respectively given by P /(77571' B+ (1= )2l 2 ) dt )

tegration of the number operatgf, 7., during the observa-

() = Zimem(t)’ 2(t) = szem(t)? ®) namely the sum of the energies of signal and noise. The signal
m m component is modelled as a Poisson random variable, of mean
herez,, is the field amplitude for the useful signal at made nlm,j;' , where z,, is the value fixed at the transmitter, and
set at the transmitter (except for a propagation loss andagphthe additive noise has a geometric distribution [9] of mean
rotation), andz,, are samples of Gaussian noise. Gaussidh—n)e,, wherez,, is the average number of thermal photons
noise can be naturally associated with thermal radiatioa atit the corresponding frequency and temperature. Singe
given temperaturd, and frequency,,. 1, the distributions of signal and noise components remain
In a quantum description, the fieldgt), Z(¢), and Z2(t) Poisson and geometric, with the respective means reduced by
are replaced by operators representing the positive-frecyu the corresponding factor, or 1 — n [13].
components of the vector potential; each Fourier mode rep-One can think of this model as a photon gas, where the
resents then one degree of freedom of the electromagnégiceiver counts the number of photons in each Fourier mode.
field. In particular, the received fielg(t) is represented
by a set of annihilation operatot,, one for each mode.
The superposition of signal and noise is then representedn the previous section we introduced a representation of
by a completely positive, trace-preserving map [11], whicrdiation as a photon gas, for a channel model of the form
combines the annihilation operators of the electromagneti
field for the useful signal, denoted Ry, and additive noise,
2m; this map guarantees that the output operators satisfy thberey,, is a measurement on the-th Fourier modeg,,, is
bosonic commutation rules. The superposition is given 2y [1the m-th signal component, a non-negative real number set at
the transmitters,, the useful signal at the output, ang, is
G = V/N€ " Ty + /1 — 1™ 21, (6) them-th sample of additive noise. By construction, sigaal

~and noisez,,, are mutually independent; the noise components
Note that the sum of the squared modulus of the coefficients are also independent for different valuesrof

multiplying the signal and noise operators is one. The cBBNn \we fyrther distinguish two variants:
maps the two input annihilation operators onto two outputs
the additional output being

IlIl. | NFORMATION RATES

ymZSm(xm)""Zma m=1,...,n, (10)

1) For discrete energy,., sm, and z,, are numbers of
photons, each of energy . The signal component,,

—ig A g 2 has a Poisson distribution with meamn,,,, wheren is
Ve e 0 a propagation loss bet\zNeen transmai]tter and regeiver. In
We assume thai, ¢. and ¢, are independent of the mode field notationx,,, = ‘zhL,,‘ The noise component,, has
index. Note that the channel propagation losand phase an geometric distribution with mearn, = (1_77)(6157”0_
uncertainty are neatly included in the model. 1)~1, i. e. thermal radiation at temperatufg attenuated
When the phaseg, and ¢, are known at the receiver, a by a factor(1 — 7).

coherent detection receiver acts on the annihilation dpera 2) For continuous energy, that &5 > 1 ande, > 1,
Um [9] and measures a quantify, = /7%, + Z,,, except for then ¥, sm = nz, and z, are non-negative real
an irrelevant phase. Herg,, is set at the transmitter arij, numbers, the energy in the-th mode. The density of
is a Gaussian random variable of variar(m‘e— n)en + 1)hu, the random variable signal ener@y.S,, approaches a
wheree,, is the average number of thermal photons. delta functionpg x (s, hv|z,hv) — 6((sm —xm)hu).
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Also, z,, are samples of exponential noise with meaaf the photon gas model. Moreover, a second boupan@y

E,=(1-n)t, also be active.

In all cases, we impose a constraint on the average receive@oth functions G and G are monotonically increasing
signal energyE,; E, is related to the average transmittedunctions ofe,. Further, G exceeds g for sufficiently high
energyE, asE, = nE,. We denote by, the average number signal energy. Both bounds thus have a crossing point, whose
of received signal photons. We consider only narrowbaf@sition we next determine for high signal and noise energy
channels, for which the frequeneyis constant for all modes. levels, i. e.c, > 1 ande; > ¢,,. Simple algebra shows that

*

A. Capacity of the Photon Gas

In the photon gas model, two sources of noise are present
at the output: Poisson noise, arising from the signal itself
additive noise. Distinct behaviour is to be expected dejmgnd @nd we obtain again the expressiep = &, previously
on which noise prevails. derived by reasoning in terms of noise variance.

In a first approximation, the behaviour is determined by the In this classical limit, in the sense of large photon counts,
noise variance. The additive noise variance is givems,jyt + Wwe may use the classical average signal-to-noise (Mg,
en) (it follows a geometric distribution), whereas the averageNR = E/E,,. Further, we assume that< 1, so thatt,, =
signal variance is, (as befits a Poisson random variable) [13J:ve,, iS approximately given byTy ase, ~ (kTo)/(hv).
For ¢, > 1, a region of practical importance, the variance§hen, we can define a threshold signal-to-noise ISN& * as
coincide if e, = 2. We denote this value of, by ¢*. For . ) "
lower values ofz,, additive noise prevails; at higher signal gnp* - L o &shv enhv  KTo  6-10 (19)
energies, Poisson noise dominates. E, KTy KTy hv v

In fact, for any inpupx (x) the mutual information satisfies

Col(el,en) = log (i—s

) ~ Llog(el) = Golel).  (18)

where in the last equation we todk = 290K. In decibels,
I(X;YV)=HY)-HY|X) (11) SNR*(dB) ~ 37.8 — 10log;, v (v in GHz).
< gles+en) — H(S(X) + Z|X), (12) The_threshold in the upper bqunds is mirror_ed by a similar
S _ behaviour for lower bounds. First, we numerically compute
as the geometric distribution has the highest entropy uth#er a numerical lower bound (G,, namely the largest of the

given constraints [8]. Then, mutual informations achieved by one of the following two
H(S(X) n Z|X) > H(Z|X) = H(Z), (13) input densities (forr > 0):

because the entropy of a sum of two independent random px(z) = (Esjign)ze’ssfsn + - 0(z) (20)

variables is at least as large as than the entropy of each of B (142¢,)/2 1 =

them (Exercise 18 of Chapter 2 of [8]) and and X are px(2) = o e e Ve

independent. Therefore, V2e-1 5(z). (21)

+ V2e—1+(1+2¢4)1/2

I(va) Sg(gs +5n) —g(gn), (14) . L . . L .
The first density is also the optimum input distribution fbet
The variablesX, S(X), andY'(S) form a Markov chain additive exponential noise channel, as determined by werd”
in this order,X — S(X) — Y = S(X) + Z, so that an [15]. As he found for the continuous-energy case, it is easy
application of the data processing inequality [8] yields to show that the channel outplit follows a geometric output
) ) distribution with mearz; + ¢,, when the inputX is distributed
I(X:Y) < I(X:5(X)), (15) according to this density and additive geometric nafsés
that is the mutual information achievable in the discréteet added. As for the second density, it was used in [14] to derive
Poisson channel; a good upper bound to the capacity of e upper bound to capacity of a discrete-time Poisson clhanne

latter was given in [14]. specifically the formula for &
Hence, the capacity (€,,<,) of the photon gas model is The threshold can be seen in Fig. 1, which depicts the upper
upper bounded by and lower bounds to the capacity as a function of the input
. number of quanta, and for several values af,, 1, 103,

Cupp(es, €n) = min(Co(s, n), Coles)), (16)  and 105 the?mal photons. The loss in the photon gas model

where G and G are respectively given by is negligible when, say, < %az. On the other hand, above

the energy level 0c*, the upper bound £becomes dominant,

Co(es en) = g(es +en) = g(en) = Cusw, and eventually half of the achievable information rate it lo

o upper and lower bounds are very close, we conclude that the
V142 s i . ;
tee Vee capacity is closely given by the upper bound in Eq. (16).
In particular, the one-shot capacity of the quantum chanm&lound the threshold a small gap of about 1 bit between the
with coherent states, {sw, is an upper bound to the capacityupper and lower bounds is visible.

_ 1\5t3 compared to Shannon’s capacity for coherent models. As the
Co(es) = log<<1 L V2l ) (s + 3) ) (17)
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Fig. 1: Bounds to the capacity for several values pf
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Average Number of Received Photons g

Fig. 2: Bounds to the capacity for several values pf

signal quadratures is not used, and a change in slope of
the capacity function fromog SNR to %1og SNR (for high
Es Es SNR) occurs. A similar limitation arises in phase-noise lirdite

log<1 + En + 1) < Colessen) < log (1 + a> (22) channels [17]. As the threshotd is close to the point where
o ~ existing digital communication systems using electrongdign
for finite values ofc,. The upper bound §es, €, ), which is  yagiation suffer from the effects of phase noise, it would be
also the one-shot capacity of the quantum model with COher%eresting to verify which of the models, coherent detectr
states Gsw, is strictly upper bounded by Shannon’s classicghe photon gas, defines most accurately the effective channe
capacity and lower bounded by the capacity of heterodypgpacity. Regarding this issue, note that the cost in inddion
detection. Moreover, the gap between the various capacitigies of maintaining the phase coherence between tragsmitt
vanishes ass; and e, go to infinity. Shannon’s classical gnq receiver are usually ignored.
capacity, Eq. (1), is also depicted in Fig. 1. For = 10° We next consider optical frequencies, for whighvanishes.
and 10°, Csj is indeed indistinguishable fromdC However, | this case, it is well-known that optical heterodyne cefmer
fore, = 1, Shannon's capacity exceeds the result derived frofatection is close to optimal for large signal energieshia t
quantum theory by an amount of about 0.56 bits; we shoudnse that almost 100% of the classical capacifywCcan be
note here that this low value of, is beyond the classical gchieved —the absolute difference between the two capaciti
context where Shannon derived his capacity formula. quickly approaches 1.44 bits, which becomes negligiblaef t

In addition, the plots also depictgy, a closed-form lower capacity is large enough.
bound to the capacity by using the density in Eq. (20). Moreover, the capacity with optical direct detection, whic

Figure 2 depiCtS the information rate loss between t%rresponds to that of the photon gas, is upper bounde¢by C
conjectured quantum channel capacityst; and the various which asymptotically grows aslog <, and lower bounded by
upper and lower bounds. The gap is rather small for energigg mutual information achieved by the density in Eq. (21),
sufficiently below the threshold, progressively approaghi or by G,,. In either case, direct detection and therefore the
half of the capacity as the input energy grows. Fexidhe capacity of the photon gas, is lower by about a fagidhan
looseness at low, is due to a pessimistic estimate of thehe capacity of the coherent-state models.
conditional output entropy (Y'|.X), which is smaller than At jow values of the signal energy, as discussed by Gordon
the Gaussian apprOXimation we have used. At I@lgthe tlny [1], the Capacity of homodyne coherent detectiomong

gap between £, and G is caused by the non-optimal inputexceeds that of heterodyne detection by a factor of 2. This
distribution; a closed-form expression derived from Edl)(2 follows from the formula for Gom [1],

would likely close this gap. The capacity of the photon gas 1 de
essentially coincides with that of the coherent-state rispde Criom(€s,€n) = = log (1 + = )
even though the phase of the coherent state is not used to 2 2en +1
transmit information. Further, binary flash signalling, where one symbol is plaated
At radio and microwave frequencies and for not extremely with probabilityp and another at/(1 — p) with probability
high signal-to-noise ratios, there are thus four modelsctvhi(1 — p), achieves a higher mutual information [1]. This is
give essentially the same channel capacity. A connectiorified in Fig. 3, which depicts the capacity as functiorz pf
worthwhile mentioning, can be made with non-coherent corof flash signalling for several values pf together with the
munications in Gaussian channels [16], where one of the twapacities for coherent detection and the conjecturedtqoan

Simple algebra shows thatcG;, €,,) is bounded by

(23)
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capacity Gisw. The envelope of the capacities with flastabove the operation of most existing communication systems
signalling is close to the upper boung,@vhich again proves at microwave frequencies. Above the threshold, such as for
a good estimate of the capacity of the photon gas.

higher frequencies, the entropy is determined by the naoise i
the signal itself, a form of shot noise or Poisson noise.
Previous studies of direct detection [16] have shown a non-
negligible capacity penalty. We relate this discrepancyato
different way of accounting for the energy of a mixture of
thermal and coherent radiation. In these studies the receiv
does not purely detect the sum of the signal and noise esergie
but an interference term between signal and noise is present
This term has mean zero but non-zero variance; this variance
is the source of the penalty in information rate. In our model

1
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——— 7 7
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'_5 — - CHet
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Fig. 3: Discrete-time Poisson channel capacity for flash sigll
nalling. 2]

(3]

Under the approximation that the energy is continuous, wg
previously saw that Poisson noise vanishes and the geametri
distribution turns into an exponential density. The catyaci (5]
of this channel was studied by Verd( [15], who derived thgs)
somewhat surprising result

B. Capacity with the Continuous Energy Model

Caen(Es, E,) = log(Es + E,,) — log(E,). (24) [

Shannon’s capacity is thus achieved even though the quadig]-
ture components of the field are not explicitly used. On th
other hand, this was to be expected since this model is [8l
good description of the regime where @ccurately gives the

capacity, and the formula here follows frong @se,, — co.  [10]

IV. CONCLUSIONS

In this paper, we have studied the transmission of inform@!
tion via electromagnetic radiation modelled as a photon gag;
that is as an ensemble of photons over a set of Fourier modes.
We have seen that the photon gas model need not incur i
significant information rate loss even though the quadeatur
components of the field are not used separately. In particuld4!
at radio and microwave frequencies, the one-shot capaf:ity[f)j]
the quantum channel with coherent states, the capacity with
heterodyne coherent detection, and the capacity of theophotL6]
gas all essentially coincide with Shannon’s formula.

We have seen that the entropy of the received signal is
determined by that of thermal radiation if the signal enerdy’]
is below a threshold. Below this threshold, the photon g I
model incurs in no information loss; above it, up to hal
of the channel capacity is lost. The capacity of the photon
gas model thus deviates from that of coherent detection
at sufficiently high signal-to-noise ratios. For a temparmat
of 290K, this threshold signal-to-noise ratio ?slfi, well

1878

this quantum interference term is made to vanish.

Finally, we mention that the photon gas model is somewhat
close to a representation of classical matter as a set a€lpart
] and that the results presented in this paper may be of help in
exploring the quantum-classical border for radiation [18]
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